MA 114 Worksheet \#28: Direction fields, Separable differential equations

1. Match the differential equation with its slope field. Give reasons for your answer.

$$
y^{\prime}=2-y \quad y^{\prime}=x(2-y) \quad y^{\prime}=x+y-1 \quad y^{\prime}=\sin (x) \sin (y)
$$

(a) Slope field I

(c) Slope Field III

(b) Slope field II

(d) Slope field IV

Figure 1: Slope fields for Problem 1
2. Use slope field labeled IV to sketch the graphs of the solutions that satisfy the given initial conditions.

$$
y(0)=-1, \quad y(0)=0, \quad y(0)=1
$$

3. Sketch the slope field of the differential equation. Then use it to sketch a solution curve that passes through the given point.
(a) $y^{\prime}=y^{2},(1,1)$
(b) $y^{\prime}=y-2 x,(1,0)$
(c) $y^{\prime}=x y-x^{2},(0,1)$
4. Consider the autonomous (depends only on y and its derivatives) differential equation $y^{\prime}=y^{2}(3-y)(y+1)$. Without solving the differential equation, determine the value of $\lim _{t \rightarrow \infty} y(t)$, where the initial value is
(a) $y(0)=1$,
(b) $y(0)=4$,
(c) $y(0)=-4$.
5. Use Euler's method with step size 0.5 to compute the approximate y-values, y_{1}, y_{2}, y_{3}, and y_{4} of the solution of the initial-value problem $y^{\prime}=y-2 x, y(1)=0$.
6. Use separation of variables to find the general solutions to the following differential equations.
(a) $y^{\prime}+4 x y^{2}=0$
(b) $\sqrt{1-x^{2}} y^{\prime}=x y$
(c) $\left(1+x^{2}\right) y^{\prime}=x^{3} y$
(d) $y^{\prime}=3 y-y^{2}$
