MA 114 Worksheet #24: Review for Exam 03

- 1. Find the volume of the following solids.
 - (a) The solid obtained by rotating the region bounded by $y = x^2$ and $x = y^2$ about the x-axis,
 - (b) The solid obtained by rotating the region bounded by $x = y^2$ and x = 1 about the line x = 1,
 - (c) The solid obtained by rotating the region bounded by $y = 4x x^2$ and y = 3 about the line x = 1,
 - (d) The solid with circular base of radius 1 and cross-sections perpendicular to the base that are equilateral triangles.
- 2. Find the area of the surface of revolution obtained by rotating the given curve about the given axis.
 - (a) $y = \sqrt{x+1}$, $0 \le x \le 3$; about x-axis, (b) $x = 3t^2$, $y = 2t^3$, $0 \le t \le 5$; about y-axis.
- 3. Compute the arc length of the following curves.

(a)
$$x = a\cos^3\theta$$
, $y = a\sin^3\theta$, $0 \le \theta \le 2\pi$, (b) $y = \sqrt{2 - x^2}$, $0 \le x \le 1$.

- 4. Find the centroid of the region bounded by $y = \sqrt{x}$ and y = x.
- 5. Find the average value of the function bounded by $y = 3\sin(x) + \cos(2x)$ on the interval $[0, \pi]$.
- 6. Compute the slope of the tangent line to the curve in Problem ??(??) above, with a = 8, at the point $(1, \sqrt{3})$. Use this to determine an equation for the tangent line.
- 7. Consider the curve given by the parametric equations $(x(t), y(t)) = (t^2, 2t + 1)$.
 - (a) Find the tangent line to the curve at (4, -3). Put your answer in the form y = mx + b.
 - (b) Find second derivative $\frac{d^2y}{dx^2}$ at (x,y)=(4,-3). Is the curve concave up or concave down near this point?