MA 114 Worksheet \#22: Parametric Curves

1. (a) How is a curve different from a parametrization of the curve?
(b) Suppose a curve is parameterized by $(x(t), y(t))$ and that there is a time t_{0} with $x^{\prime}\left(t_{0}\right)=0, x^{\prime \prime}\left(t_{0}\right)>0$, and $y^{\prime}\left(t_{0}\right)>0$. What can you say about the curve near $\left(x\left(t_{0}\right), y\left(t_{0}\right)\right) ?$
(c) What parametric equations represent the circle of radius 5 with center $(2,4)$?
(d) Represent the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{c^{2}}=1$ with parametric equations.
(e) Do the two sets of parametric equations

$$
y_{1}(t)=5 \sin (t), x_{1}(t)=5 \cos (t), 0 \leq t \leq 2 \pi
$$

and

$$
y_{2}(t)=5 \sin (t), x_{2}(t)=5 \cos (t), 0 \leq t \leq 20 \pi
$$

represent the same parametric curve? Discuss.
2. Consider the curve parametrized by $c(t)=\left(\sin (t)+\frac{t}{\pi},\left(\frac{t}{\pi}\right)^{2}\right)$, for $0 \leq t \leq 2 \pi$.
(a) Plot the points given by $t=0, \frac{\pi}{4}, \frac{\pi}{2}, \frac{3 \pi}{4}, \pi, \frac{3 \pi}{2}, 2 \pi$.
(b) Consider the derivatives of $x(t)$ and $y(t)$ when $t=\frac{\pi}{2}$ and $t=\frac{3 \pi}{2}$. What does this tell you about the curve near these points?
(c) Use the above information to plot the curve.
3. Find a Cartesian equation for the following parametric curves. Sketch the curves to see if you solved them correctly.
(a) $x=\sqrt{t}, y=1-t$.
(b) $x=3 t-5, y=2 t+1$.
(c) $x=\cos (t), y=\sin (t)$.
4. Represent each of the following curves as parametric equations traced just once on the indicated interval.
(a) $y=x^{3}$ from $x=0$ to $x=2$.
(b) $\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$.
5. A particle travels from the point $(2,3)$ to $(-1,-1)$ along a straight line over the course of 5 seconds. Write down a set of parametric equations which describe the position of the particle for any time between 0 and 5 seconds.
6. For the following parametric curves, find an equation for the tangent to the curve at the specified value of the parameter.
(a) $x=e^{\sqrt{t}}, y=t-\ln \left(t^{2}\right)$ at $t=1$.
(b) $x=\cos (\theta)+\sin (2 \theta), y=\cos (\theta)$, at $\theta=\pi / 2$.
7. For the following parametric curve, find $d y / d x$.
(a) $x=e^{\sqrt{t}}, y=t+e^{-t}$.
(b) $x=t^{3}-12 t, y=t^{2}-1$.
(c) $x=4 \cos (t), y=\sin (2 t)$.
8. Find $d^{2} y / d x^{2}$ for the curve $x=7+t^{2}+e^{t}, y=\cos (t)+\frac{1}{t}, 0<t \leq \pi$.
9. Find the arc length of the following curves.
(a) $x=1+3 t^{2}, y=4+2 t^{3}, 0 \leq t \leq 1$.
(b) $x=4 \cos (t), y=4 \sin (t), 0 \leq t \leq 2 \pi$.
(c) $x=3 t^{2}, y=4 t^{3}, 1 \leq t \leq 3$.
10. Suppose you wrap a string around a circle. If you unwind the string from the circle while holding it taut, the end of the string traces out a curve called the involute of the circle. Suppose you have a circle of radius r centered at the origin, with the end of the string all the way wrapped up resting at the point $(r, 0)$. As you unwrap the string, define θ to be the angle formed by the x-axis and the line segment from the center of the circle to the point up to which you have unwrapped the string.
(a) Draw a picture and label θ.
(b) Show that the parametric equations of the involute are given by $x=r(\cos \theta+\theta \sin \theta)$, $y=r(\sin \theta-\theta \cos \theta)$.
(c) Find the length of the involute for $0 \leq \theta \leq 2 \pi$.

