MA 114 Worksheet \#20: Arc length and surface area

1. (a) Write down the formula for the arc length of a function $f(x)$ over the interval $[a, b]$ including the required conditions on $f(x)$.
(b) Write down the formula for the surface area of a solid of revolution generated by rotating a function $f(x)$ over the interval $[a, b]$ around the x-axis. Include the required conditions on $f(x)$.
(c) Write down the formula for the surface area of a solid of revolution generated by rotating a function $f(x)$ over the interval $[a, b]$ around the y-axis. Include the required conditions on $f(x)$.
2. Find an integral expression for the arc length of the following curves. Do not evaluate the integrals.
(a) $f(x)=\sin (x)$ from $x=0$ to $x=2$.
(b) $f(x)=x^{4}$ from $x=2$ to $x=6$.
(c) $x^{2}+y^{2}=1$
3. Find the arc length of the following curves.
(a) $f(x)=x^{3 / 2}$ from $x=0$ to $x=2$.
(b) $f(x)=\ln (\cos (x))$ from $x=0$ to $x=\pi / 3$.
(c) $f(x)=e^{x}$ from $x=0$ to $x=1$.
4. Set up a function $s(t)$ that gives the arc length of the curve $f(x)=2 x+1$ from $x=0$ to $x=t$. Find $s(4)$.
5. Compute the surface areas of revolution about the x-axis over the given interval for the following functions.
(a) $y=x,[0,4]$
(b) $y=x^{3},[0,2]$
(c) $y=\left(4-x^{2 / 3}\right)^{3 / 2},[0,8]$
(d) $y=e^{-x},[0,1]$
(e) $y=\frac{1}{4} x^{2}-\frac{1}{2} \ln x,[1, e]$
(f) $y=\sin x,[0, \pi]$
(g) Find the surface area of the torus obtained by rotating the circle $x^{2}+(y-b)^{2}=r^{2}$ about the x-axis.
(h) Show that the surface area of a right circular cone of radius r and height h is $\pi r \sqrt{r^{2}+h^{2}}$.
Hint: Rotate a line $y=m x$ about the x-axis for $0 \leq x \leq h$, where m is determined by the radius r.
