MA 114 Worksheet \#19: Volumes II

1. (a) Write a general integral to compute the volume of a solid obtained by rotating the region under $y=f(x)$ over the interval $[a, b]$ about the y-axis using the method of cylindrical shells.
(b) If you use the disk method to compute the same volume, are you integrating with respect to x or y ? Why?
2. Sketch the enclosed region and use the Shell Method to calculate the volume of rotation about the y-axis.
(a) $y=3 x-2, y=6-x, x=0$
(b) $y=x^{2}, y=8-x^{2}, x=0$, for $x \geq 0$
(c) $y=8-x^{3}, y=8-4 x$, for $x \geq 0$
3. For each of the following, use disks or washers to find the an integral expression for the volume of the region. Evaluate the integrals for parts (a) and (d).
(a) R is region bounded by $y=1-x^{2}$ and $y=0$; about the x-axis.
(b) R is region bounded by $y=\frac{1}{x}, x=1, x=2$, and $y=0$; about the x-axis.
(c) R is region bounded by $x=2 \sqrt{y}, x=0$, and $y=9$; about the y-axis.
(d) R is region bounded by $y=1-x^{2}$ and $y=0$; about the line $y=-1$.
(e) Between the regions in part (a) and part (d), which volume is bigger? Why?
(f) R is region bounded by $y=e^{-x}, y=1$, and $x=2$; about the line $y=2$.
(g) R is region bounded by $y=x$ and $y=\sqrt{x}$; about the line $x=2$.
4. A soda glass has the shape of the surface generated by revolving the graph of $y=6 x^{2}$ for $0 \leq x \leq 1$ about the y-axis. Soda is extracted from the glass through a straw at the rate of $1 / 2$ cubic inch per second. How fast is the soda level in the glass dropping when the level is 2 inches? (Answer should be implicitly in units of inches per second.)
5. The torus is the solid obtained by rotating the circle $(x-a)^{2}+y^{2}=b^{2}$ around the y-axis (assume that $a>b$). Show that it has volume $2 \pi^{2} a b^{2}$.
[Hint: Draw a picture, set up the problem and evaluate the integral by interpreting it as the area of a circle.]
