MA 114 Worksheet #16: Review for Exam 02

1. List the first five terms of the sequence:

(a)
$$a_n = \frac{(-1)^n n}{n! + 1}$$
 (b) $a_1 = 6, a_{n+1} = \frac{a_n}{n}$

2. Determine whether the sequence converges or diverges. If it converges, find the limit.

(a)
$$a_n = 3^n 7^{-n}$$

(b) $a_n = \frac{(-1)^{n+1} n}{n + \sqrt{n}}$
(c) $a_n = \frac{\ln n}{\ln 2n}$
(d) $a_n = \frac{\cos^2 n}{2^n}$

- 3. Explain what it means to say that $\sum_{n=1}^{\infty} a_n = 2$.
- 4. Determine whether the geometric series is convergent or divergent. If it is convergent, find its sum.

(a)
$$\sum_{n=1}^{\infty} \frac{(-4)^{n-1}}{3^n}$$
 (b) $\sum_{n=1}^{\infty} \frac{6 \cdot 2^{n-1}}{3^n}$

5. Determine whether the given series converges or diverges and state which test you used.

(a)
$$\sum_{n=2}^{\infty} \frac{1}{n \ln n}$$

(b) $\sum_{n=1}^{\infty} \frac{7\sqrt{n}}{5n^{3/2} + 3n - 2}$
(c) $\sum_{n=1}^{\infty} n! e^{-8n}$
(d) $\sum_{n=1}^{\infty} \left(\frac{\ln n}{5n + 7}\right)^n$
(e) $\sum_{n=1}^{\infty} \frac{9^n}{9n}$
(f) $\sum_{n=1}^{\infty} (-1)^{n+1} n e^{-n}$
(g) $\sum_{n=1}^{\infty} (-1)^{n-1} \arctan n$

6. Determine whether the given series is absolutely convergent or conditionally convergent or divergent.

(a)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{5n+1}$$

(b) $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^3+1}$
(c) $\sum_{n=1}^{\infty} (-1)^n \cos\left(\frac{1}{n^2}\right)$
(d) $\sum_{n=1}^{\infty} \frac{(n!)^n}{n^{4n}}$

7. Find the radius and interval of convergence of the series.

(a)
$$\sum_{n=1}^{\infty} \frac{x^n}{n^4 4^n}$$
 (b) $\sum_{n=1}^{\infty} \frac{(-1)^n x^n}{n^2}$ (c) $\sum_{n=1}^{\infty} \frac{(5x-4)^n}{n^3}$

8. Find a power series representation for the function and determine its radius of convergence.

(a)
$$f(x) = \frac{5}{1 - 4x^2}$$

(b) $f(x) = \frac{x^2}{x^4 + 16}$
(c) $f(x) = \frac{3}{2 + 2x}$
(d) $f(x) = e^{-x^2}$

9. Using the formula

$$\ln(1+x) = \int_0^x \frac{1}{1+t} \, dt$$

find a power series for $\ln(1+x)$ and state its radius of convergence.

10. Use the Maclaurin series for $\cos(x)$ to compute

$$\lim_{x \to 0} \frac{1 - \cos(x)}{x^2}.$$