MA 114 Worksheet \#15: Taylor and Maclaurin Series

1. (a) Suppose that $f(x)$ has a power series representation for $|x|<R$. What is the general formula for the Maclaurin series for f ?
(b) Suppose that $f(x)$ has a power series representation for $|x-a|<R$. What is the general formula for the Taylor series for f about a ?
(c) Let $f(x)=1+2 x+3 x^{2}+4 x^{3}+5 x^{4}$. Find the Maclaurin series for f.
(d) Let $f(x)=1+2 x+3 x^{2}+4 x^{3}$. Find the Taylor series for $f(x)$ centered at $x=1$.
2. Assume that each of the following functions has a power series expansion. Find the Maclaurin series for each. Be sure to provide the domain on which the expansion is valid.
(a) $f(x)=\ln (1+x)$
(b) $f(x)=x e^{2 x}$
3. Use a known Maclaurin series to obtain the Maclaurin series for the given function. Specify the radius of convergence for the series.
(a) $f(x)=\frac{x^{2}}{1-3 x}$
(d) $f(x)=x^{5} \sin \left(3 x^{2}\right)$
(b) $f(x)=e^{x}+e^{-x}$
(e) $f(x)=\sin ^{2} x$.
(c) $f(x)=e^{-x^{2}}$
Hint: $\sin ^{2} x=\frac{1}{2}(1-\cos (2 x))$
4. Find the following Taylor expansions about $x=a$ for each of the following functions and their associated radii of convergence.
(a) $f(x)=e^{5 x}, a=0$.
(b) $f(x)=\sin (\pi x), a=1$.
5. Differentiate the series

$$
\sin (x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}
$$

to find a Taylor series for $\cos (x)$.
6. Use Maclaurin series to find the following limit: $\lim _{x \rightarrow 0} \frac{x-\tan ^{-1}(x)}{x^{3}}$.
7. Approximate the following integral using a 6 th order Taylor polynomial for $\cos (x)$: $\int_{0}^{1} x \cos \left(x^{3}\right) d x$
8. Use power series multiplication to find the first three terms of the Maclaurin series for $f(x)=e^{x} \ln (1-x)$.

