MA 114 Worksheet \#12: Alternating Series, Absolute Convergence, \& Conditional Convergence

1. (a) Let $a_{n}=\frac{n}{3 n+1}$. Does $\left\{a_{n}\right\}$ converge? Does $\sum_{n=1}^{\infty} a_{n}$ converge?
(b) Give an example of a divergent series $\sum_{n=1}^{\infty} a_{n}$ where $\lim _{n \rightarrow \infty} a_{n}=0$.
(c) Does there exist a convergent series $\sum_{n=1}^{\infty} a_{n}$ which satisfies $\lim _{n \rightarrow \infty} a_{n} \neq 0$? Explain.
(d) When does a series converge absolutely? When does a series converge conditionally?
(e) State the alternating series test.
(f) Prove that the alternating harmonic series $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}$ converges.
(g) State the Alternating Series Estimation Theorem.
2. Test the following series for convergence or divergence.
(a) $\sum_{n=1}^{\infty}(-1)^{n} \frac{\sqrt{n}}{1+2 n}$
(d) $\sum_{n=1}^{\infty} \frac{3^{n}}{4^{n}+5^{n}}$
(b) $\sum_{n=2}^{\infty}(-1)^{n} \frac{1}{\ln n}$
(e) $\sum_{n=2}^{\infty}(-1)^{n} \frac{n}{\ln n}$
(c) $\sum_{n=1}^{\infty} \frac{\cos n \pi}{n^{2 / 3}}$
(f) $\sum_{n=1}^{\infty}\left(\frac{-5}{18}\right)$
3. Use the Alternating Series Estimation Theorem to estimate the sum correct to four decimal places.
(a) $\sum_{n=1}^{\infty} \frac{(-0.8)^{n}}{n!}$
(b) $\sum_{n=1}^{\infty}(-1)^{n-1} \frac{n}{8^{n}}$
4. Approximate the sum of the series $\sum_{n=1}^{\infty}(-1)^{n} \frac{1}{(2 n)!}$ correct to four decimal places; i. e. so that \mid error $\mid<0.00005$.
