MA 114 Worksheet \#03: Trigonometric Substitution

1. Use the trigonometric substitution $x=\sin (u)$ to find $\int \frac{1}{\sqrt{1-x^{2}}} d x$.

Remark: This exercise verifies one of the basic anti-derivatives we learned in Calculus I. On an exam, you would be expected to know this anti-derivative and would not be expected to show work to evaluate the anti-derivative by substitution.
2. Compute the following integrals:
(a) $\int_{0}^{2} \frac{u^{3}}{\sqrt{16-u^{2}}} d u$
(d) $\int \frac{x^{3}}{\sqrt{4+x^{2}}} d x$
(b) $\int \frac{1}{x^{2} \sqrt{25-x^{2}}} d x$
(e) $\int \frac{1}{(1+x)^{2}} d x$
(c) $\int \frac{x^{2}}{\sqrt{9-x^{2}}} d x$
(f) $\int_{0}^{3} \frac{x}{\sqrt{36-x^{2}}} d x$.
3. Evaluate the following integrals. One may be easily evaluated by substitution $u=1+x^{2}$ and for the other use an appropriate trigonometric subsitution.

$$
\int \frac{\sqrt{1+x^{2}}}{x} d x \quad \int \frac{x}{\sqrt{1+x^{2}}} d x
$$

4. (a) Evaluate the integral $\int_{0}^{r} \sqrt{r^{2}-x^{2}} d x$ using trigonometric substitution.
(b) Use your answer to part a) to verify the formaula for the area of a circle of radius r.
5. Let $r>0$. Consider the identity

$$
\int_{0}^{s} \sqrt{r^{2}-x^{2}} d x=\frac{1}{2} r^{2} \arcsin (s / r)+\frac{1}{2} s \sqrt{r^{2}-s^{2}}
$$

where $0 \leq s \leq r$.
(a) Plot the curves $y=\sqrt{r^{2}-x^{2}}, x=s$, and $y=\frac{x}{s} \sqrt{r^{2}-x^{2}}$.
(b) Using part (a), verify the identity geometrically.
(c) Verify the identity using trigonometric substitution.

