MA 114 Worksheet #03: Trigonometric Substitution

1. Use the trigonometric substitution $x = \sin(u)$ to find $\int \frac{1}{\sqrt{1-x^2}} dx$.

Remark: This exercise verifies one of the basic anti-derivatives we learned in Calculus I. On an exam, you would be expected to know this anti-derivative and would not be expected to show work to evaluate the anti-derivative by substitution.

2. Compute the following integrals:

(a)
$$\int_0^2 \frac{u^3}{\sqrt{16 - u^2}} du$$

(d)
$$\int \frac{x^3}{\sqrt{4+x^2}} \, dx$$

(b)
$$\int \frac{1}{x^2 \sqrt{25 - x^2}} dx$$

$$(e) \int \frac{1}{(1+x)^2} dx$$

(c)
$$\int \frac{x^2}{\sqrt{9-x^2}} dx$$

(f)
$$\int_0^3 \frac{x}{\sqrt{36 - x^2}} dx$$
.

3. Evaluate the following integrals. One may be easily evaluated by substitution $u=1+x^2$ and for the other use an appropriate trigonometric substitution.

$$\int \frac{\sqrt{1+x^2}}{x} \, dx \qquad \int \frac{x}{\sqrt{1+x^2}} \, dx$$

- 4. (a) Evaluate the integral $\int_0^r \sqrt{r^2 x^2} dx$ using trigonometric substitution.
 - (b) Use your answer to part a) to verify the formaula for the area of a circle of radius r.
- 5. Let r > 0. Consider the identity

$$\int_0^s \sqrt{r^2 - x^2} \, dx = \frac{1}{2} r^2 \arcsin(s/r) + \frac{1}{2} s \sqrt{r^2 - s^2}$$

where $0 \le s \le r$.

- (a) Plot the curves $y = \sqrt{r^2 x^2}$, x = s, and $y = \frac{x}{s}\sqrt{r^2 x^2}$.
- (b) Using part (a), verify the identity geometrically.
- (c) Verify the identity using trigonometric substitution.